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Differential games in which the payoff is the time rcquircd to reach a given terminal set (optimum-time games) arc considered. 
The Bellman-Isaacs equation must have a classical solution in domains whei-e the value function of the game is smooth. At singular 
points, where smooth branches of the solution interlock, more complicated conditions must hold, in terms of directional derivatives. 
A class of games is found and two types of singularities are described such that the aforementioned conditions follow autcimatically 
from the geometrical properties of the singularities: the class of games with autonomous separated dynamics in which one player’s 
control set is a lint scgmcnt. An appropriate theorem is proved. The result is used to construct the value function of a game in 
which thcrc arc three typcc of singular surfaces: dispersal. equivocal, and switching surfaces. <: ?Otl3 Elxvier Ltd. All right\ re~rvcd. 

Given an optimum-time differential game, one can formulate sufficient conditions for an arbitrary 
function to be the value function of that game [l, 21. If the value function of the game is smooth, it 
may be determined by solving a Cauchy problem for a certain first-order partial differential equation 
(the Bellman-Isaacs equation) [3]. Under certain additional conditions, the method of classical 
characteristics may be used to construct a solution of the Cauchy problem [4]. However, only in 
exceptionally rare cases is the value function smooth. Nevertheless, the method of characteristics may 
be used to construct a piecewise-smooth value function. The construction method, due to Isaacs [3], 
amounts to successive determination of smooth branches of the solution by the method of classical 
characteristics. 

The main difficulty in applying Isaacs’ method is to find the surfaces on which smooth branches of 
the solution are spliced together (singular surfaces). Various types of singular surfaces have been 
considered, as have some methods for constructing them [3], but on the whole there is no rigorous proof 
of the fact that a piecewise-smooth function obtained in this way will be the value function of a differential 
game. From the modern point of view, that entails verifying stability conditions on the singular surfaces 
of the function constructed [2.5]. 

The result of this paper includes a definition of certain types of singular point and a proof that stability 
conditions hold at such points. As an example of the application of the result. the value function of a 
brachistochrone game problem will be constructed. 

I. THE MINIMUM-TIME GAME PROBLEM. VALUE FUNCTION 
AND STABILITY CONDITIONS 

Let the motion of a control system be described by a differential equation 

x’(t) = f(x(t), u(t), u(t)), t 20 (1.1) 

wherex(t) E R” is the phase state of the system at time t, u(f) E P and u(t) E Q are the controls of the 
first and second players, and P C R”’ and Q C R’ compact sets. The function,f(x. ~1, 1)) is assumed to 
be continuous jointly in its variables and to satisfy a Lipschitz condition 

Ilf(x, u, u) - f(y, u, u)tt <: Lb - ~11, x, y E R”, u E P, 2) E Q 

where L is a constant. In addition, let us assume that Isaacs’ condition (the saddle-point condition in 
the small game [l]) is satisfied 
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H(x9 P) := $nr$P’ f(x, 4 u>> = maxmin (p, f(x, u, u)), 
UEQUEP 

x, p E R” (I.?) 

Positional strategies [l] for the first and second players are defined as arbitrary functions l-11 R” + 1’ 
and V: R” --;r Q. Strategies U and Vgenerate pencils X1(x0, U) and X2(x0, V) of constructive motions 
[l, 61 that emanate from positionxo at time t = 0. 

A constructive motionx(*) E X,(x,, u) is defined as a functionx(t) for which, in any interval (0, 1-9), 
there is a sequence of Euler polygonal linesa?) defined by the conditions 

P( t> = f( x(@( t), u(Xy $‘>), lP’( t)) 

t E [zjk’, Ti’“,‘, ), X’k’(o) = x0, Tf’ = 0, i = 1,2, . . . 

which converge uniformly to x(t) and are such that supi( - T!~)) + 0 as k -+ 00. Here the intervals 
[zjk), $J (i = 1, 2, . ..) constitute a partition of the semiaxis t a 0, uk(.) is a measurable function with 
values in the set Q. The elements of the set X,(x,, V) are defined similarly. 

The object of the first player is to impel the point as quickly as possible towards a given closed terminal 
set M C R”. The second player tries either to prevent an encounter with A4 or to maximize the time till 
it occurs. Thus, the functional to be optimized for the minimum-time game problem has the form 

J(x(.)) := 
{ 

for any 
-Tn::>xo(f~;t)~ M) othenvise t 2 O - . 

If the point x0 E R” is such that 

i;fsupJ(X,(x,, U)) = supinfJ(X,(x,, V)) =: TO(x,) 
V 

(1.3) 

then the number T”(xo) E [0, -1 is called the value ofthegame at pointxo. Under the conditions assumed 
for the functionf(x, u, u), the value of the game exists for anyx E R" [l, 51. The function To: R" -+ 
[0, -1 is known as the value function of the game. 

Closely related to the value function are the concepts of u- and v-stable functions [l, 21. Consider a 
continuous function T: R" -+ R such that M = {x E R” : T(x) = 0) and for anyx E R" the limit 

$T(x) = lim T(x + 6q) - T(x) 
s-i+0 6 

exists. 
The function T(x) is said to be u-stable (v-stable) if, for anyx E R"\M, 

sup inf{a,T(x) : q E cof(x, P, u)} I-l 
UC Q 

where 

(izfpsup{d,,T(x) : 17 E cof(x, u, Q)} L -1) 

f(x, P, u) := ff(x, u, U> : u E PI, f(x, u, Q) := (f(x, u, u) : UE Q} 

(1.4) 

and co(f) denotes the convex hull of the vectorf. 
Conditions (1.4) are conditions for the stability of the function T(x) at a point x E Rn\M. In a domain 

where the function T(x) is differentiable, inequalities (1.4) become the Bellman-Isaacs equation [3] 

H(x, Iv(x)) = -1 (1.5) 

The validity of inequalities (1.4) is a necessary and sufficient condition for a function T(x) to be the 
value function of a minimum-time differential game [2]. 

If no good description of the function T(x) is available, direct verification of conditions (1.4) is difficult. 
It turns out, however, that in many cases the validity of the stability conditions at a point depends entirely 
on the structure of the function T(x) in the neighbourhood of the point. We shall now define some types 
of such points and prove that the stability conditions hold there. 
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2. SIMPLE SINGULAR POINTS 

Suppose the function 7’(x) is given and continuous in a domain Q C R”. The following definitions will 
carry over to the case of a function T(x) ideas introduced previously [7] for the value function of a game. 

Definirk~~ 1. A domain G C Sz is called a regular domain of T(x) if 
(1) T E C2(G) and H(x, DT(x)) = -1,x E G; 
(2) H E C2(G x Y), where Y is some neighbourhood of the set {DT(x): x E G}. 
If x* is a point in a regular domain, then there is a neighbourhood of any arbitrarily chosen time t* 

in which a unique solution (x(t), p(t)) of the characteristic system 

.i = qx, p), p = -H,(x, p) 

of Eq. ( 1.5) exists that satisfies the conditions 

x(r*) = x*, p(r*) = iIT 

(2.1) 

and is such that&t) = DT(x(t)) [4]. It follows from this last equality that through any point of a regular 
domain there passes a unique solution x(t) of the differential equation 

i = H,(x,DT(x)) 

which is called a characteristic of the Bellman-Isaacs equation (1.5). Thus, a field of characteristics is 
defined in any regular domain. 

The Isaacs condition (1.2) guarantees the existence of functions U,(x) and I/T(x) such that 

H(x9 Wx)) = (DUx), f(x, U,(x), V,(x))) 

In a regular domain G we have 

ff,h DT(x)) = f(x, U,(x), V,(x)) 

and the functionx + H,(x, DT(x)) is of class C’(G). Consequently, positional strategies U,(x) and VT(x) 
defined in G generate motions along the characteristics. The function U,(x) and VT(x) are bounded 
and therefore have finite partial limits for any x E JG. 

Definition 2. A point x E Sz for which a regular domain G C Q containing x exists is called a regular 
point; otherwise, the point is singular. 

Surfaces, all of whose points are singular, will be called singular surfaces. 

Definition 3. A singular point x* E Q is said to be simple if 
(1) a neighbourhood G C R ofx* exists such that G = G+ u I- u G-, where l- is a smooth hypersurface 

and G’ are regular domains; 
(2) the function DT(x), x E G’ has a continuous extension to the hypersurface r. 
Let X(T) be the set of simple singular points of the function T(x). We shall use the following notation 

for a pointx* E C(T): G’ are the regular domains (in the definition of a simple singular point 
by the hypersurface r; T’(x) are the restrictions of the function T(x) to the domains G’; Lh 

separated 
7(x), I/T(x) 

are positional strategies of the players, generating motions along the characteristics in the domains G’. 
In addition, let 

p* := limDP(x), U* := limU$(x), u* := limV$(x) 

asx +x*,x E G’, and 
f’ := f(X*, u*, 2) 

The symbols lim U+(x), lim V+(x) will denote arbitrary partial limits of the functions U;(x), G(x) 
asx --+x*,x E G”. 

Since the function H(x, p) is continuous, we have 

(p+,f*) = H(x*, p+) = -1 
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Fig. 1 

We note a few properties of simple singular points. 
If p+ = p-, then the function T(x) is differentiable at the point x* (but not necessarily in a 

neighbourhood of thatpoint), andH(x*, DT(x*)) = -1. 
In the case whenp+ #p-,the functiohs T*(x) defmed on G’ can be extended as continuous functions 

[7] to the entire domain G in such a way that T’ E d(G). When that is done the hypersurface I 
separating the domains G’ may be represented as in the form 

I- = {xc G: T+(x) = Z-(x)} 

Since the hypersurface F may be considered as a level surface of the function T+(x) - T-(x), it follows 
that the vector p+ -p’ is orthogonal to F at the point x*. In addition, the following representation is 
true in G 

if the vectorp+ -p- is directed from G to G+ (from G+ to G-). Consequently, for any vector n E R” 
a derivative &,T(x*) exists in the direction 11, with &,T(x*) 
p+ -p- is directed from G to G+ (from G+ to G). 

= max(p’, n) (min(p’, n)) if the vector 

3. DISPERSAL AND EQUIVOCAL SINGULAR POINTS 
Various types of singular surfaces, at whose points optimal motions have different properties, are known 
for value functions T(x) in the theory of differential games [3,7]. The classification of these surfaces is 
based on an analysis the.behaviour of optimalpaths in the neighbourhood of singular points, also allowing 
for the possibility of.singular optimal motions on the singular surface itself. 

We shall extend the concepts of dispersal and equivocal singular points [3,7] to the case of a function 
T(x). ,?‘b that end, we will first define the corresponding types of simple singular points and clarify the 
geometricai meaning of the definitions. 

Definition 4. A pointx* E C(T) is called adispemalpoint if 

p+*p-. (f+,P+-P-wh (f-,P’-P-b0 

A simple singular point x* is a dispersal point if characteristics from the adjacent regular domains 
G+ and G- leave it at a non-zero angle to the separating hypersurface I (Fig. la). 

Definition 5. A pointx* E Z(T) is called an equivocalpoint (relative to the second player) if 

p+#p-, (f’,p’-P7>0. (f,P’-P-)20 
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and, moreover, a control vector Li(x*) E P exists such that 

(p’,.?) = b-3 = -1 

where f: = f(x*, ti(x*), u-) (f(x*, a(~*), u+)), when the vector p+ -pm is directed from G- to G-+ (from 
G+ to G-J. 

A characteristic from the regular domain G- arrives at an equivocal point, but a characteristic from 
the regular domain G+ leaves it (at a non-zero angle to I); in addition, a control for the first player 
exists that guarantees motion at a’velocity equal to -1 on the surface r in the case when the second 
player uses a limiting control corresponding to the domain G- (Fig. lb). 

A smooth hypersurface is said to be a dispersal (equivocal) hypersurface if it consists entirely of 
dispersal (equivocal) points. 

4. THE SUFFICIENT CONDITIONS FOR STABILITY 

We will now formulate the main result of this paper. 

Theorem. Supposef(x, u, u) = cp(x, u) + \(I@, U) and let the set t&x, Q) = {~(x, u): 2) E Q} be a line 
segment in I?“. If x* E C(T) is a dispersal point or an equivocal point, and moreover v(x*. u+) f 
(x*, U-), then the stability conditions (1.4) are satisfied there. 

Proof. Consider a point x* E C(T) and assume that the vectorp+ -p- is directed from G- to G’. 
Taking into account the expression for the directional derivative at a simple singular point and the 

separated dynamics of system (l.l), we rewrite the stability conditions (1.4) at the point x* as follows: 
1) for vector 2) E Q a vector (pu E co(p(x*, P) exists such that @‘, cpU + v(x*, v)) c -1 (cl-stability); 
2) for any vector u E P a vector vu E v(x*, Q) exists such that 

maxi CP’, W*, u) + w,h (P-, 94x*, u) + w,> I 2 -1 

Since ~(x, Q) is a line segment in R”, it follows that the set t+r(x, Q(x,p)) is either a singleton and contains 
one of the endpoints of ~(x, Q), or it is the entire segment ~(x, Q). By definition, we have VT(x) E 
Q(x, DT(x)). Since G” are regular domains, it follows that $x, G(x)) E C’(G’). Consequently, 
~(x, G(x)) is an endpoint of the segment w(x, Q) for anyx E G-. 

We introduce the following notation. 

‘pf := q$x*, ui), \y* := yqx*, u*> 

It follows from the definition of the vector U’ and from the condition w+ f v- that $ are different 
endpoints of v(x*, Q). Thus, we have the representation 

y(x*,Q) = {Lyr++(l-h)W-: hE [O, l]} 

We will first prove that condition 1 holds at the point x*. 
For any 2) E Q, let us find a number h, E [0, l] such that 

w(x*, u) = h,y/l+ + (1 - h,)W- 

Suppose x* is a dispersal point. Set 

CPU := h”cp+ f (1 - h&J- 

Since cp* E cp(x*, P), it follows that (p,, E co(p(x*, P). We have 

(P’Y %I + w(x*, UN = h, ( p*, cp+ + yf+> + ( 1 - h,) (pi, cp- + y-) (4.1) 
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By the definition of a dispersal point 

(f+,P+-P7>0~ KP’-P-w 
Consequently 

(P-9 f3 c (P’, f3 = -1, b’, j-7 < (P-9 f-> = -1 

Sincep = cp* + $, it follows from (4.1) and (4.2) that 

bf, cpv + w(x*, u>> 5 -1 

this proves u-stability for a dispersal point. 
Now suppose x* is an equivocal point. Put 

9” := h,q’ + (1 - n,)$, @I := 0(X*, ii( 

(4.2) 

(4.3) 

where z.+*) is a singular control of the first player as in the definition of an equivocal point. Since 
(p+, 6 E (x*, P), it follows that (pu E co@*, P). In addition, an equality analogous to (4.1) is true with 
(p replaced by @. 

By the definition of an equivocal point, 

(f’,p’-P-b09 <p-,.7-) = <P’,.& = -1 

We have 

(p-,f+Mp+,f+j = -1, f’ = q++v+, 3 = ++v- 

Consequently, inequality (4.3) is true. This proves u-stability for an equivocal point. 
The truth of condition 2 at the point x* follows from the inequality 

if we put 

(P*9 ‘ptx* ,U)+\V*)2(p*,(p*+yl*) = -1 

\v, := $ 

Note that the assumption that the vectorp+ -p- is directed from G- to Gf guarantees satisfaction 
of the v-stability condition for dispersal and equivocal points without the restrictions on the dynamics 
of system (1.1) described in the conditions of the theorem. Similarly, if the vector p+ -pm is directed 
from G+ to G-, the conditions of the theorem are not used to prove u-stability at dispersal or equivocal 
points. 

In some cases, the theorem enables one to justify the application of Isaacs’ technique [3] to look for 
the value function of a game using fields of characteristics and the singular surfaces just constructed. 

5. THE BRACHISTOCHRONE GAME PROBLEM 

As an example, let us apply the theorem to the brachistochrone game problem, in which singular curves 
of the types described appear. 

The branchistochrone game problem was considered by Isaacs [3], and his solution was improved 
and expanded in [8]. The game problem investigated in the present paper differs in its formulation from 
Isaacs’ problem in the form of the terminal set and the vectogram ~(x, Q) of the second player. 

Formulation of the problem. Consider the minimum-time differential game 

.tl = hcosu, i-, = &sinu+ wu 

UE P = [0,2x], UE Q = [-l,l], t20, +,E RI 

where l7: is the upper half-plane. 

(5.1) 
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The first (second) player minimizes (maximizes) the time needed to reach the terminal set M = 
[-& 0] x [0, h], where d, h > 0. The second player’s success depends on the number ~j > 0. If w = 0 
we obtain the dynamics of the classical brachistochrone problem [9]. 

First, using Isaacs’ technique, we define a function T: R: -+ [0, -1. Then, applying the theorem 
on the sufficient conditions for stability, we shall show that 7’(x) is a value function in the 
branchistochrone game problem. 

Since the right-hand side of system (5.1) is independent of xl, the game is symmetrical about the 
vertical line xi = -d/2. From now on all constructions will be carried out for the half-plane xl 2 -612. 

The results of the computations will be illustrated for different values of h at it = 2. 

The Bellman-Isaacs equation. Any function in a regular domain is uniquely defined as the solution 
of a certain boundary-value problem for the Bellman-Isaacs equation (1.5). This solution may be found 
by the method of classical characteristics. Therefore, the first step in constructing T(X) will be integration 
of the characteristic system (2.1). 

Let us write Eq. (5.1) for the branchistochrone game problem. We have 

H(x, p) = min uE[02~lU~~~L,[~121;11c~~~+~Z(r/lXZ~in~+~~)1 (5.2) 

Extremal controls u” and u” achieving the minimum and maximum in (5.2) are defined by the formulae 

cosu” = -p,/llpll, sinu’ = -P*4lPIl? IIPII = &-z 

v”e Q(x,P) = 
signp,, if ~~$0 

[-l,l], if p2 = 0 

Consequently, f-G, p) = 4 Ilp II + w Ip2 I, and Eq. (1.5) for the function T(X) becomes 

-Jl;iIIDTll + w(m3x21 = -1 

where DT = (3T/&,, JT/&) is the vector of partial derivatives of T(x). 

(5.3) 

The characteristic system. On the assumption that p2 t 0, x2 > 0, the characteristic system for 
Eq. (5.3) in reverse time may be written as 

x; = q$ p; = 0, x; = “‘;g -q12, p; = -$L 
-x2 

where 
z’ = dzldz, z = const - t. u2 = signp, 

Suppose the initial conditions for the characteristic system are given as 

x(0, s> = 5(s), p(0, s> = C(s), s E s 

where the function c(s) defines a smooth curve parametrically 

I- = (x = C(s) : s E S] 

(5.5) 

The phase curve ~(7, s) (for fixed s) is a characteristic. Varying the parameter s, we obtain a family of 
characteristics emanating from the points of the curve I. 

Let us integrate system (5.4). Since p[ = 0, we will henceforth let the symbol pl denote a constant, 
determined from the initial data of system (5.4). 

Two cases will be considered. First let p1 = 0. The first and third equations of system (5.4) become 

x; = 0, x; = (fi2-w)p2. 

The yield first integrals 



336 L. V. Kamneva 

XI = Cl, &Z-2(+.&+wln(fiz-w)) = C, (5.6) 

Equation (5.3) is one more first integral 

In that case the characteristics will be vertical straight lines. By virtue of the initial conditions (5.5) 
Eqs (5.6) may be rewritten as 

XI = 51(s). CL22 = X/G + wln(& - w)) + C,(s) 

The function C,(S) is determined by substituting the initial data (5.5) into the left-hand side of the second 
equation in (5.6). If the function cl(s) is invertible, the second equation will define the function 
r = T(x) in the domain covered by the vertical characteristics. 

Now letpi # 0. Equation (5.3) is a first integral 

- JdPll + W/P21 + 1 = 0 

of the characteristic system, defining the relation between the quantitiesx2 andp2. Using this relation, 
we group Eqs (5.4) as a system 

x; = X2P*(W2 -x2) ;- Cl2ow,, PI)(X2 - w2) - x2 + cJwR(x2, p,)’ x - -x2 + oww29 PI 1 
where 

0 := sign(wpt - (p2J), R(x2, p,) := x2( 1 + pt(w2 - x2)) 

and an equation 

P; = -IIPl1242w~P2( + 2) 

In the domains where cr is a constant, we find a first integral of system (5.7): 

(5.7) 

(5.8) 

and thus also of system (5.4), where 

J.li := SignPj, i = 1,2, h(p,) := w2 + 1/p; 

and D1 is a constant. 
Integration of Eq. (5.8) determines yet another first integral of system (5.4): 

7 + w21nllpl12 + pi1awdp21p,) = D2 

The initial data (5.5) determine the values of the constants Di and D2 as functions of s E S, so that 
we can write the system of equations 

&llPll + WP,P, + 1 = 0 

x1 +~L1~20[h(p,)atcsin~~-~x2(h(~,)-x2)l = Dl(s) 

‘5 + w21nlIp112 + pi’a=tg(p21pl) = D2b) 

PI = LO> 

(5.9) 

which is an algebraic system of four equations in the four unknownspi,pz, s and 2. It implicitly defines 
the function z = T(x) in the domain covered by the characteristics. 
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The characteristic system (5.4) has been completely integrated. 
The complications in the subsequent analytical investigation of the problem are due to the impossibility 

of explicitly defining the function T(X). 

The construction of primary families of characteristics for h > w2. We will first consider the case 
h > w2. Let us find the admissible zone r0 C d&f [3] (taking the aforementioned symmetry of the problem 
into consideration). We have 

l-0 = (x,=0,0<x*Ih}u{-d/2<x,~O,x*=h} 

Put T(x) = 0 on To. We shall construct primary families of characteristics emanating from the horizontal 
and vertical parts of the set To, as well as from the point (0, h). 

The characteristics emanating from the horizontal part of To at u2 = +1 are vertical straight lines; 
they define the function 

T(x) := 2fiz - & +wln((h*-w)/($h-w)) (5.10) 

at points of the vertical strip {(xt, x2): -d/2 G XI s 0, x2 s h). 
We now construct two smooth families of characteristics. The first emanates from the right vertical 

part of the set r,, with u2 = -1, and the second, from the point (0, h) with u2 = +l. These particular 
values of p2 are chosen for heuristic reasons. 

The resulting families partly overlap; they define functions Tl(x) and T2(x) in certain domains Rr 
and a2 respectively. 

The first family of characteristics is bounded below by a smooth curve % consisting of semi-permeable 
curve [3] defined by the equation 

x, = l3.Jx.J := w*arcsin- - 2 4% Ja , 
W 

x2 E [0, w*] 

and the ray ((x1, x2): x1 3 7cw2/2,x2 = w2>. The curve 3 will be a barrier [3]. 
The second family is bounded below by the curve Y defined by the condition p2 = +0 for motion 

along the characteristics. 
Figure 2 illustrates numerical constructions of the primary families of characteristics emanating in 

reverse time from the admissible zone I-, for parameter values h = 9, w = 2. The first and second families 
of characteristics are labelled 1 and 2 respectively. 

Construction of singular curve for h > iv2. On the basis of the primary families of characteristics, we 
shall now construct a singular curve separating the domain above the barrier CiJ into two sets. Above 

h=9 

n 
” 

0 5 10 1.5 20 x, 
Fig. 2 
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h=9 

h= 

0 10 20 30 40 50 x, 
Fig. 3 

the singular curve, the function T(x) being constructed will coincide with the function T,(x); below, it 
will partly coincide with Ti(x), and will be partly defined by a secondary family of characteristics 
emanating from the points of the singular curve. 

Let 

ii = (x E R, n fd2: T,(x) = T*(X)) 

If h > w2 + AW and A,+, is some positive number, the curve G is tangent to one of the characteristics 
of the (critical) first family. For values of h near w2 the curve % is tangent to the barrier Ph. In both 
cases, denote the point of contact by a = (a,, u2), and define 

The parts of the characteristics of both families after their intersection with the curve 9 will be omitted. 
If a E 93, we continue 91 by a curve 8, motion along which (in reverse time) is given by the equations 

xi = -fi2cosi((x1, x2), xi = -,&sinii(x,, x2) + w 

P2 WP2-1 i&x,, x2) = arctg-& + axcos-, 3T2 
fi2,,p,, Pi(X) = q(x)’ i = 172 

The control a(x) is found rom the equality 

p,(n)fi2cosii(x) + p2(x)(fi2sinii(x) - w) = -1 

If a E 93, the curve 8 will emanate from some point a* = (a;, a;) defined by the condition that the 
vector 

(&cosii(a*), @sinir(a*) -w) 
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h = 4.4 

nl I I I I I J 

x2 r 
h = 4.2 

I 
I II 

u 2 4 6 
Fig. 4 

and the curve 3 are tangent at the point a*. 
The curve 8 is continuable up to a point b = (bl, b2) where it is tangent to the curve Y. Let 

9 = ((x,, x2) E 5: x1 2 b,) 

The parts of the characteristics of the second family after their intersection with the curve %; will be 
omitted. 

The upper part of Fig. 3 illustrates the results of numerical constructions (in reverse time) of the 
curves 9 and ‘G for parameter values h = 9, w = 2. The parts of the characteristics after intersection 
with ‘G?J are not shown. 

We will now specify initial data for the system of characteristics (5.4) on the curves %, Y at pz = -1, 
based on the continuity conditions and on the properties of equivocality on % and differentiability on 
Y. We construct the secondary family of characteristics, which is not continuable below the line 
x2 = IV’ and completely covers the domain between the barrier CA and the curve %Y, 

In the lower part of Fig. 3 we show numerical constructions of all the families of characteristics in 
forward time at h = 9, w = 2, and the curve %%Y (the case h > w2 + A,,,). The parts 9 and Y are shown 
as dashed curves. 

Figure 4 shows, in greater detail, the case of closely situated curves 9, % and of the curve S for 
parameter vafues h = 4.4, w = 2 (the upper part of Fig. 4), as weiI as the case of intersection (along 
the tangent) of the curve 9 with the barrier C?& and the construction of the curve ‘G: from a point 
a*e Bforh = 4.2, w = 2 (the lower part of Fig. 4). 
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Valuefinction of thegame when h > w2. The right-hand side of system (5.1) does not satisfy a Lipschitz 
condition as a function of x. Nonetheless, within the framework of the problem currently under 
consideration, the definition of the value function using pencils of constructive motions and Eq. (1.3) 
remains unchanged. 

We define the function T(x) as follows. At points of the vertical strip {(x,, x2,): -d/2 s x, 6 0, 
x2 B h), T(x) is given by formula (5.10); T(x) = TZ(x) above the curves 9, % and 9’; below the curve 9 
and below the critical characteristic (if it exists), define T(x) = 7’,(x); in the remaining domain, T(x) is 
defined by he secondary family of characteristics. On the barrier 93, we define r(x) by continuity. In 
the domain below the barrier curve, we set T(x) = 00. 

By construction, 9 is a dispersal curve for T(x), and % is an equivocal curve. The curve Y is called a 
switching curve. It consists of simple singular points for which the equalityp+(x) = p-(x) holds. 

On the set x1 < -d/2, x2 2 0, the function T(x) is defined by symmetry with respect to the straight 
linexl = -d/2. 

The smooth branches of T(x) are solutions of Eq. (5.3); by the theorem proved previously, the dispersal 
and equivocal nature of the splicing guarantee that the stability conditions (1.4) are satisfied at points 
where the function is not smooth. 

We now introduce the notation 

R := (x E R:: T(x) < -) 

Using the stability properties of the function T(x) at interior points of the set G, we will show that for 
h > w* the function T(x) just constructed is the value function in the brachistochrone game problem. 

In the class of positional strategies, it is always true [l] that 

infsupJ(X,(x, U)) 2 supinfJ(X2(x, V)), 
(I V 

x E Rt 

In the set e\Q the second player has a deflecting strategy V(x) = -1. Thus, 

s;pinfJ(X,(x, V)) = = 

and therefore Eq. (1.3) holds for the points x E R:\Q. 
On the set RM4 it will suffice to prove that 

infsupJ(X,(x, V)) I T(x) I s;pinfJ(X,(x, V)) 
u 

(5.11) 

1. For arbitrary c > 0, we find the point xc = (x;, x5) E 93 defined by the condition T(x’) = C. Suppose 

WC := {xe R;: T(x)Sc), iir, := {XE WC: x+;} 

On the set R: we define a function 

T(x)-c, if XE n\w, 

T,(x) = 0, if xc iir, 

-1 if x E (R:\i2) u ( W,\ec) 

The boundary of the set WC is labelled I in Fig. 5 and the set FC is hatched. 
Suppose 

ii := {x E R$ T,(x) < -} 

From any point of the set fi, the first player guarantees_argival at the set I?” in a finite time. The function 
TC(x) is u- and v-stable at any interior point of the set Q\W, , since that is the case for T(x). In addition, 
the right-hand side of system (5.1) satisfies a Lipschitz condition with respect to x above the straight 
linex2 = x22. Using the facts just listed, one establishes that T,(x) is a value function in the minimum- 
time game problem with terminal set WC and game space situated above the straight line x2 = x22. 

2. We will now consider the problem of approaching the set M from a point x* E Q\M. 
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For arbitrary E > 0 and 6, > 0, we define 6 = &t/2 and find a number c > 0 such that the open 6- 
neighbourhood m: of the set wc is contained in the open 6t-neighbourhood Ms, of the set 44. The 
boundary of the set I%‘,” is labelled 2 in Fig. 5(a) that of the set MS, is labelled 3. 

Since T,(x) is a value function for the minimum-time problem with terminal set WC, a strategy oe of 
the first player exists [6] that guarantees approach to the set I?‘: in a time T&x,) + E in a discrete control 
scheme with stepsize A < A(&), where A(&) is a positive number such that A(S) -+ 0 as 6 + 0. 

Since i?lf c Ms and T&x*) c 7(x,), it follows that the strategy oE also guarantees approach to the 
set Ms, in a time 2(x,) + E in a discrete control scheme with stepsize A G A(6). 

Let 6, -+ 0. Using the compactness of the bundle X,(x,, OJ of constructive motions [ 11, we obtain 

supJ(x,(~*, VE>) 5 W,) + E 

This implies the left inequality in (5.11). 
3. We will now consider the problem of evading the set M when approaching from a point x* E Q;zvM. 
For arbitrary E > 0, define c = &/2. We introduce the notation 

t* := TJX,) - El2 

Since T,(x) is-a value function for the minimum-time problem with terminal set w,, a strategy V, and 
number_s F > 0, A > 0 exist [6] such that the strategy V, guarantees evasion of the closed Gneighbourhood 
@ of WC up to time t* in a discrete control scheme with stepsize A G A. The boundary of the set @! 
is labelled 2 in Fig. 5(b). 

FE,, 
Note that when setting up the extremal equations [6] for the second player that define the strategy 
one can confine ones attention to the numbers + 1. 

Let 3, be the curve obtained by displacing the barrier 93 to the right parallel to the horizontal axis, 
in such a way that the point of intersection of the straight line x2 = xi and the curve ‘Z&t lies in the 
set Wf!. The symbol a2 will denote the curve symmetric to %t with respect to the vertical linext = -d/2. 
The curves 93t and a2 are shown in Fig. S(b). Using the control v = -1, the second player refrains from 
motion in the domain below cu_rve 93t($B2). 

On the basis of the strategy I/,, we define a strategy V, as follows. Define V,(x) = -1 at points strictly 
below the curve 931 and V,(x) = V,(x) at other points of the half-plane x1 3 -d/2. The strategy V, is 
defined symmetrically in the half-plane x1 G -d/2. 

Choose a number 6t > 0 in such a way that the St-neighbourhood Ms, of the set M does not intersect 
the curve 93r. The boundary of the set 446, is labelled 3 in Fig. 5(b). We will show that the strategy V, 
guarantees evasion of the set Ms, up to a time t* in a discrete control scheme with stepsize A s &. 

Define a partition of the semiaxis t 2 0 by intervals [ti, ti+l) and find a number N such that t* c 
[tN, tN+l). Consider an arbitrary motion x(t) generated by the strategy V, in a discrete control scheme. 

Suppose there is an instant of time tj, 0 6 j G N, such that the point x(t.) lies strictly beneath the 
curve 93I(%2) andx(t) 6~ Ms, fort 6 tja Then, by the definition of the strategy d E, the pointx(t) will remain 
below the curve 931(932) for any t > tj and will not reach Ms, for an infinite interval of time. 
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Now suppose that for all times ti, 0 6 i 4 N, the point x(tJ does not lie beneath the curves 93i and 
&. Consequently, at each time tj the second player’s control is chosen in accordance with the strategy 
VE. In that case the path x(t) cannot intersect the straight line x2 = x5 up to time t*. 

Suppose the contrary. Let t G t* be the first time at which the point x(i) belongs to the straight line 
~2 = x;. Let j be a number such that t E (tj, tj+l), 0 s j 6 N. Since the strategy ve evades the closed 
set@: up to time t,, it follows thatx(t) will lie either strictly below 9lt or strictly below %12. In the interval 
[tj, tj+l) we have VE(x(t)) = 1, since otherwise, i.e., if VE(x(t)) = -1, the pointx($+r) would lie below $33, 
or below BR2. 

Since m) < w, it follows that 

i2(i) = m)sinu+w>O 

Therefore, in the interval [tj, t) the motion takes place below the straight line x2 = xi. Since the point 
x(tj) is not below a1 or a2, there are a time t -G $ such that x( T) E @. But this contradicts the definition 
of the strategy V,. Consequently, the motion x(t) cannot intersect the straight line x2 = x!j up to a time 
t*. 

Thus, the motion x(t) takes place above the line x2 = xc2 up to a time t*. Since at each instant of time 
ti, 0 G i G N, the second player’s control is chosen in accordance with the strategy V,, it follows that 
x(t) e Wt for t G t*. Consequently, the motionx(t) will not reach the set Ms, up to time t*. 

Since c = s/2, it follows that t* = T(x,) - E. We thus deduce that the strategy V, evades the set Ms, 
up to time 2(x,) - E. Hence the bundle X2(x*, VE) of constructive motions satisfies the inequality 

infJ(X2(x*, V,)) L T(x,) -E 

This implies the right-hand inequality in (5.11). 

The value function of the game when h 6 w2. In the h c w2, we define T(x) = T2(x) above the curve 
9 and T(x) = TI(x) below the curve ‘9, The functions TI(x), T2(x) and the curve 9 are constructed as 
in the case h > w2. 

Fields of characteristics for parameter values h = 4, w = 2 are shown in the left-hand part of Fig. 6. 
The entire singular curve 9 is a dispersal curve (the right-hand part of Fig. 6). 

The barrier curve consists of a part 93* of the semi-permeable curve x1 = B,(x2) lying in the strip 
0 6 x2 G xi and apart %* of the semi-permeable curvex = B*(x2, h): = -Bu(x2) + B,(h) lying in the 
strip x5 s x2 G w , where the number xi is defined by the equation B*(x2) = B*(x2, h). On the curve 
93* and 93*, T(x) is defined by continuity. At all other points we set T(x) = 00. 

On the set x1 < -d/2, x2 3 0, T(x) is defined symmetrically with respect to the straight line x1 = -d/2. 
The dispersal nature of the splicing of the smooth branches of T(x) guarantees satisfaction of the 

stability conditions (1.41 at points where the function is not smooth. 
As in the cash h > w , one can show that T(x) is a value function of the game with h c w2. 
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